
Bimodal Tangible Functional Programming

1

Brian Hempel and Ravi Chugh
ECOOP
30 June 2022

Direct Manipulation UI

2

Why not D.M. for programming?

3

D.M. the AST…

4
…but those are expressions not output values

Nodes-and-wires

The On-line Graphical Specification
of Computer Procedures

W. Sutherland (1966)

Blocks

Scratch
Resnick et al. (2009)

D.M. the values…

5

Programming by Demonstration (PBD)

Pygmalion
Smith (1975)

Have you ever used PBD?
- Domain-specific
- Rarely textual code

You give a step-by-step demonstration of what you want the computer to do.

Bimodal Programming
6

ordinary
code

program’s
runtime

data values

7

ALVIS Live!
Hundhausen & Brown (2007)

Array algorithms (for education)

8

ALVIS Live!
Hundhausen & Brown (2007)

Array algorithms (for education)
Very linear: have to manage time.

Tangible Functional Programming
Conal Elliott (2007)

9

Non-linear
Pure functional programming (no state) complements non-linear

editing because, without state, one need not manage time.

Canvas of tangible values

Tangible Value (TV)

Inputs

Output

Non-linear

10
Direct Manipulation + Synthesis =

+ Bimodal + SynthesisGoals:

• Goals

• Demo

• Implementation

• Evaluation

• Future Work & Conclusion
11

• Goals

• Demo

• Implementation

• Evaluation

• Future Work & Conclusion
12

Tangible Values in Maniposynth

13

1 let-binding = 1 TV (Roughly)

Expression

Value
Pattern

Demo: List Length

14

Demo: List Length

15

Synthesis

Drag to extract AssertionsAutocomplete to value

Autocomplete to extract

• Goals

• Demo

• Implementation
 - Interpreter
 - Binding reordering
 - Synthesizer

• Evaluation

• Future Work & Conclusion
16

Architecture

17

Editor Code File

Code is
“ground truth”

Webserver

Server runs code
and renders HTML

~8600 OCaml LOC

Browser

~2000 JS LOC

Browser polls
for changes
or tells server

to do an action

Interpreter

• Adapted the interpreter from Camlboot [Courant et al. 2020]
(Couldn’t just modify the standard OCaml tools because the OCaml compiler
performs type erasure—can’t log the value when expression is at polymorphic type!)

• On each execution step, log:

 (exp/pat, call frame num, val, env)

• For live display, show value at that exp/pat with the current
call frame num

18

Binding reordering

19

let a = 1

let c () =
 let x = (a, b, c, d) in
 let a = 0 in
 x

let b = 2

?

let a = 1

let b = 2

let rec c () =
 let a = 0 in
 let d = (!") in
 let x = (a, b, c, d) in
 x

2D canvas is unordered, let-bindings in code are automatically
reordered to bring items into scope.

Requirement: All names at the same “indentation level” must be unique.

Synthesizer
• No big ideas, just want it to work with

(a) few examples,
(b) no type annotations, and
(c) produce quality results
even with the Pervasives functions in scope (e.g., addition, subtraction, etc).

• Type-directed, inspired by Myth (Osera and Zdancewic 2015)

• With a probabilistic context-free grammar (PCFG)

• More in paper and preprint appendix
20

B. Hempel and R. Chugh 16:33

Expressions e ::= 52%x
| 20%e1 ei

| 10%
fun x æ e

| 8.1%ctor
| 6.6%c
| 1.9%

match e1 with C... æ ei

| 1.3%
if e1 then e2 else e3

Names x ::= 73%localName | 27%pervasivesName
Local Names localName ::= 31%MostRecentlyIntroduced

| 20%2ndMostRecentlyIntroduced
| 11%3rdMostRecentlyIntroduced
| ...etc...

Pervasives Names pervasivesName ::= 4.0%
(+) | 2.9%

(=) | 1.9%
(-) | 1.4%

(&&)

| 1.3%
(||)

1.3%
(ˆ) | 1.2%

not | 1.2%
(<) | 0.90%

(<>)

| 0.63%
(@) | ...other non-imperative names...

Constructors ctor ::= 54%pervasivesCtor | 46%userCtor
Pervasives Ctors pervasivesCtor ::= e1

24%::e2 | 20%
[] | 15%

() | 13%
false

| 8.2%
true | 7.2%

None | 6.7%
Some e | ...etc...

User Ctors userCtor ::= ...ctors defined in file (uniform probability)...

Constants c ::= 52%int | 45%str | 2.2%char | 0.43%float
Int Literals int ::= 37%0 | 26%1 | 10%2 | 3.4%3

| 2.7%4 | 1.6%8 | 1.5%5 | 1.1%-1
String Literals str ::= 2.9%

"" | 0.62%
"." | 0.59%

")" | 0.37%
" "

| 0.34%
"(" | ...other 1-char strs from corpus...

Char Literals char ::= 9.1%
’\n’ | 8.4%

’ ’ | 6.2%
’\\’ | 4.2%

’0’

| 4.2%
’-’ | ...other chars from corpus...

Float Literals float ::= 25%0.0 | 20%1.0 | 18%0.0 | 8.3%0.5 | 5.0%10.0

Figure 15 Grammar used for the statistics model, with probabilities associated with productions.

D Example Push-Down for Synthesis

As part of the type-directed refinement process, Myth will push the user’s examples to the
frontier of synthesis. For example, if the user asserts that a hole should output 0 when given
the input [], Myth will refine the hole to fun x -> (??) and refine the example to note
that (??) should resolve to 0 when x is bound to []. This allows Myth to quickly verify
when a hole filling satisfies all given examples.

However, Myth’s implementation of this example refinement machinery requires that the
user provide all assertions directly on holes. Users cannot write assert (length [] = 0).
Instead, they must write, essentially, let length = ((??) such that { [] => 0 }). It
would be better if users could invoke synthesis on a partial sketch.

To allow assertions on program sketches rather than only on holes, Smyth uses a technique
dubbed “live unevaluation” [48] to push top-level assertions down to constraints directly
on holes. Pushing down the assertions is not fundamentally required to perform synthe-
sis—a synthesizer may guess terms at the holes and check the top-level assertions (indeed
Maniposynth does so)—but pushing the assertions down to the holes provides information

ECOOP 2022

B. Hempel and R. Chugh 16:33

Expressions e ::= 52%x
| 20%e1 ei

| 10%
fun x æ e

| 8.1%ctor
| 6.6%c
| 1.9%

match e1 with C... æ ei

| 1.3%
if e1 then e2 else e3

Names x ::= 73%localName | 27%pervasivesName
Local Names localName ::= 31%MostRecentlyIntroduced

| 20%2ndMostRecentlyIntroduced
| 11%3rdMostRecentlyIntroduced
| ...etc...

Pervasives Names pervasivesName ::= 4.0%
(+) | 2.9%

(=) | 1.9%
(-) | 1.4%

(&&)

| 1.3%
(||)

1.3%
(ˆ) | 1.2%

not | 1.2%
(<) | 0.90%

(<>)

| 0.63%
(@) | ...other non-imperative names...

Constructors ctor ::= 54%pervasivesCtor | 46%userCtor
Pervasives Ctors pervasivesCtor ::= e1

24%::e2 | 20%
[] | 15%

() | 13%
false

| 8.2%
true | 7.2%

None | 6.7%
Some e | ...etc...

User Ctors userCtor ::= ...ctors defined in file (uniform probability)...

Constants c ::= 52%int | 45%str | 2.2%char | 0.43%float
Int Literals int ::= 37%0 | 26%1 | 10%2 | 3.4%3

| 2.7%4 | 1.6%8 | 1.5%5 | 1.1%-1
String Literals str ::= 2.9%

"" | 0.62%
"." | 0.59%

")" | 0.37%
" "

| 0.34%
"(" | ...other 1-char strs from corpus...

Char Literals char ::= 9.1%
’\n’ | 8.4%

’ ’ | 6.2%
’\\’ | 4.2%

’0’

| 4.2%
’-’ | ...other chars from corpus...

Float Literals float ::= 25%0.0 | 20%1.0 | 18%0.0 | 8.3%0.5 | 5.0%10.0

Figure 15 Grammar used for the statistics model, with probabilities associated with productions.

D Example Push-Down for Synthesis

As part of the type-directed refinement process, Myth will push the user’s examples to the
frontier of synthesis. For example, if the user asserts that a hole should output 0 when given
the input [], Myth will refine the hole to fun x -> (??) and refine the example to note
that (??) should resolve to 0 when x is bound to []. This allows Myth to quickly verify
when a hole filling satisfies all given examples.

However, Myth’s implementation of this example refinement machinery requires that the
user provide all assertions directly on holes. Users cannot write assert (length [] = 0).
Instead, they must write, essentially, let length = ((??) such that { [] => 0 }). It
would be better if users could invoke synthesis on a partial sketch.

To allow assertions on program sketches rather than only on holes, Smyth uses a technique
dubbed “live unevaluation” [48] to push top-level assertions down to constraints directly
on holes. Pushing down the assertions is not fundamentally required to perform synthe-
sis—a synthesizer may guess terms at the holes and check the top-level assertions (indeed
Maniposynth does so)—but pushing the assertions down to the holes provides information

ECOOP 2022

• Goals

• Demos

• Implementation

• Evaluation

• Future Work &
Conclusion

21

• Goals

• Demos

• Implementation

• Evaluation

• Future Work &
Conclusion

22

Two Evaluations
1. An expert (me) implemented 38

examples from the first lessons of a
functional data structures course (IN2347
Functional Data Structures, Technische Universität
München)

2. Exploratory user study with two
professional OCaml programmers

Goal: qualitative insights. What is or is
not working?

23

Example Implementation Results

24

Function LOC Asserts Time Mouse Keybd Un/Re/Del TypeErr Crash
nat_plus 5 0.8 6 5
nat_minus 8 1.9 6 11
nat_mult 9 1.4 8 6
nat_exp 13 2.1 9 6
nat_factorial 13 1.6 8 4
nat_map_sumi 10 2.6 11 5 1
count 9 1.9 9 11
length 4 0.3 1 7
snoc 8 1 2.4 8 12 2
reverse 8 1.5 4 9
nat_list_max 17 4.6 23 21
nat_list_sum 13 1.1 9 4
fold 9 3.2 14 6
shuffles 14 14.5 25 28 2
contains 9 2.2 10 13 1
distinct 16 2.4 9 11 2
foldl 10 1 1.5 10 6 1
foldr 8 1 1.8 10 5
slice 12 3 9.8 19 22 4
append 8 1 1.4 7 9
sort_by 21 3 6.2 17 29
quickselect 13 1 13.1 19 38 1 1
sort 16 3 5.6 11 32 2
ltree_inorder 12 1 2.9 7 20 1 1
ltree_fold 13 1 3.1 13 13
ltree_mirror 11 1 4.4 12 6 1 1
bst_contains 14 3 6.6 11 32 1
bst_contains2 17 5 10.4 20 41 2
btree_join 34 2 61.7 82 64 51 2
bst_delete 36 2 14.4 31 24 4
bstd_valid 29 3 32.2 63 100 4 1
bstd_insert 18 2 8.0 38 23 3
bstd_count 21 1 7.6 15 32 1
bst_in_range 31 3 9.3 23 39 3
btree_enum 29 3 19.2 31 51 6 3
btree_height 15 1 1.9 11 14
btree_pretty 14 1 3.7 4 21 4
btree_same_shape 19 1 8.1 14 34 7
Total 566 44 277.6 628 814 97 13 3

Table 4.1: Example exercises, with lines of code, number of assertions, time in minutes, number of
mouse actions (excluding selection and undo/redo), number of keyboard interactions (e.g., typing
in a textbox), number of undo/redo/deletions, number of type errors encountered, and number of
timesManiposynth crashed and the file had to be repaired in the text editor.

101

4.5 hours, 3 tool crashes, but success!

Fastest, 0.3min

Slowest, 62min

25

Observations

26

No trouble with binding order
(some trouble with nested match order)

Value-oriented vs. expression-oriented thinking

Could hide the code

Despite trying to place attention on values…

…often thought only about expressions.

User Study

• 2 participants x 3 sessions x 2 hours each

• 5 and 11 years of professional OCaml experience

• Ran Maniposynth on their own computers alongside Vim

• Participants attempted exercises with varying amounts of
guidance from facilitator

• Goal: qualitative insights

27

Observations from User Study
• Positive about non-linearity: “fits a lot more with how I

like to write code” (P1)

• Too many colors, too few labels

• Even in session three, both participants occasionally
still needed guidance from the facilitator

• Writing assertions was not a problem: both wanted to
do so, unprompted

• Synthesis only produced useful results 16% of the time,
but participants were not bothered when it did not

• (More in paper)

28

P2 didn’t fully realize they were working
with live values until after the first exercise.

P1 & facilitator stuck on a bug that was
clear from looking at the live values

P2 was so used to reading
Node (Node (Leaf 1, Leaf 2), Leaf 3))  

they were subtly repelled by beautified trees

29

Expression-oriented vs.

Value-oriented thinking{

• Goals

• Demos

• Implementation

• Evaluation

• Future Work &
Conclusion

30

31

• Goals

• Demos

• Implementation

• Evaluation

• Future Work &
Conclusion

Future Work

32

More self-description in UI (Tooltips?)

Shrink large values

Encourage value-oriented thinking

- Display values instead of variable names?

- More actions on values?

Conclusion

Yes, you can have a graphical, non-linear interface
even when the program is ordinary code.

33

Bimodal Tangible Functional Programming

34

Thank
you!

Visit maniposynth.org for artifact and video

http://maniposynth.org

